
Class Members

CMSC 240 Software Systems Development

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

How do we design a class?

We must specify the 3 parts:

1. Member variables: What variables make up this new type?

2. Member functions: What functions can you call on a variable
of this type?

3. Constructor: What happens when you make a new instance of
this type?

September 21, 2023
1. Member variables: What variables make up this new type?

2. Member functions: What functions can you call on a variable of this type?

3. Constructor: What happens when you make a new instance of this type?

Member variables

Member functions

Constructor

Don’t forget to free your memory

Ask a question

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Enumerations

• An enum is a very simple user-defined type

• Use them when you want a set of values as symbolic constants

The body of an enumeration is simply a list of enumerators.

Enumerations

• An enum is a very simple user-defined type

• Use them when you want a set of values as symbolic constants

For any other enumerator whose definition does not have an initializer,
the associated value is the value of the previous enumerator plus one

Enumerations

• An enum is a very simple user-defined type

• Use them when you want a set of values as symbolic constants

Enumerations

• An enum is a very simple user-defined type

• Use them when you want a set of values as symbolic constants

The class in enum class means that the

enumerators are in the scope of the enumeration.

To refer to jan we have to say Month::jan

Enumerations

• An enum is a very simple user-defined type

• Use them when you want a set of values as symbolic constants

If we don’t initialize the first enumerator, the count starts with 0.

Here mon is represented as 0 and sun is represented as 6.

When to use an Enumeration

Where could you add an
enumeration to your design?

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Static Member Variables

• Static member variables can be accessed on the class itself,
without creating an instance of the class

• Exists only once, regardless of how many instances of the class are
created

• Shared among all instances of the class

• Value is set outside the class, typically in a source (.cpp) file, even if
it's declared const (this is required to allocate storage for it)

Error: Can not modify
a const value.

Static Member Functions

• Static member functions can be called on the class itself,
without creating an instance of the class

• It can only access static member variables or other static
member functions directly

• It's often used as a utility function or to interact with static
member variables.

Where could you add static
variables or methods to your
design?

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Method Overloading
You can reuse method names if
the parameters in the method

signature are different.

Operator Overloading

• Operator overloading is a feature in C++ that allows you to
redefine the behavior of built-in operators (like +, -, *, etc.) for
user-defined types like classes

• This enables you to use these operators in intuitive ways with
objects of your custom types, making your code more readable
and expressive

Operator Overloading

• Syntax: Operator overloading is achieved by defining special
member functions with the keyword operator followed by the
operator symbol you wish to overload

Why pass and return ostream&

• There are several reasons, but the primary is that one would
like to ”chain” calls to operator<<

• First, why pass an ostream&
• Because you want to avoid the copy that would be required for if you

pass by value. Moreover, the copy constructor for std::ostream is
disabled (this sounds cryptic, but it’s not).

• But if you’re passing by reference, why not return void instead
of ostream&
• This is where the chaining comes in (see next slide).

Thanks StackOverflow: https://stackoverflow.com/questions/47466358/what-is-the-spaceship-three-way-comparison-operator-in-c
and
https://stackoverflow.com/questions/30272143/why-does-overloading-ostreams-operator-need-a-reference

https://stackoverflow.com/questions/47466358/
https://stackoverflow.com/questions/30272143/

Why pass and return ostream&

• Consider the following:

• The bottom line is equivalent to the top line, in which you are
“chaining” calls to operator<<

Where could you use
operator overloading in your
design?

Today

• Constructors

• Enumerations

• Static members

• Operator overloading

• In class activity

Visibility

- private
+ public
protected

	Slide 1: Class Members
	Slide 2: Today
	Slide 3: Today
	Slide 4: How do we design a class? We must specify the 3 parts:
	Slide 5: September 21, 2023
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Don’t forget to free your memory
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Ask a question
	Slide 21: Today
	Slide 22: Enumerations
	Slide 23: Enumerations
	Slide 24: Enumerations
	Slide 25: Enumerations
	Slide 26: Enumerations
	Slide 27: When to use an Enumeration
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Where could you add an enumeration to your design?
	Slide 39: Today
	Slide 40: Static Member Variables
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Static Member Functions
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 67
	Slide 68: Where could you add static variables or methods to your design?
	Slide 69: Today
	Slide 70: Method Overloading
	Slide 71: Operator Overloading
	Slide 72: Operator Overloading
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Why pass and return ostream&
	Slide 83: Why pass and return ostream&
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Where could you use operator overloading in your design?
	Slide 88: Today
	Slide 95

