
Inheritance & 
Polymorphism

CMSC 240 Software Systems Development



Today
• Inheritance 

• Polymorphism

• Virtual functions

• Pure virtual functions and 
abstract classes



Today
• Inheritance 

• Polymorphism

• Virtual functions

• Pure virtual functions and 
abstract classes



Inheritance
• Suppose you will define classes to model cats, dogs, and birds
• These classes have many common features
• What is the best way to design these classes to avoid redundancy?

• Object-oriented programming allows you to define new classes 
from existing classes
• This is called inheritance



Superclasses and Subclasses
• Inheritance enables you to define a general class (i.e., a 

superclass) and later extend it to more specialized classes (i.e., 
subclasses)
• A subclass inherits from a superclass 
• For example, both a dog and a cat are animals
• Animal is a superclass
• Dog is a subclass of Animal
• Cat is a subclass of Animal

• This is an example of an is-a relationship 
• Dog is-a Animal
• Cat is-a Animal



Subclasses

Superclass

Animal
- name: string
- age: int
- favoriteFood : string
+ Animal(name: string, age: int)
+ eat()
+ setFavoriteFood(food: string)
+ speak()
- sleep()

Dog
- height: float
- dogBreed: string
+ Dog(name: string, age: int, height: float)
+ setDogBreed(breed: string)
+ speak()

Cat
- whiskerLength: float
- numberOfLives: int
+ Cat(name: string, age: int, whiskerLength: float)
+ setNumberOfLives(num: int)
+ speak()

“is a” “is a”



Superclasses and Subclasses
• A subclass inherits accessible data fields and methods from its 

superclass and may also add new data fields and methods
• A subclass is not a subset of its superclass
• A subclass usually contains more information and methods

• For example
• Animal has a name, age, and favorite food
• Cat also has whisker length, and number of lives
• Dog also has height, and a dog breed



Superclasses and Subclasses
• A superclass is also called a “parent class” or “base class”
• A subclass is also called a “child class” or “derived class”

• A child class inherits from a parent class

• A subclass extends a superclass

• A derived class derives from a base class



Superclasses and Subclasses
• Remember, a class defines a type

• A type defined by a subclass is called a subtype, and a type defined 
by its superclass is called a supertype

• For example
• Cat is a subtype of Animal, and
• Animal is a supertype of Dog



Inheritance

public
protected
private



Access Control with Inheritance
Public Inheritance
• public members of the base class 

Øbecome public members of the derived class

• protected members of the base class 
Øbecome protected members of the derived class

• private members of the base class are 
Ønot accessible directly from the derived class



Access Control with Inheritance
Protected Inheritance
• both public and protected members of the base class 

Øbecome protected members of the derived class

• private members of the base class are 
Ønot accessible directly from the derived class



Access Control with Inheritance
Private Inheritance
• both public and protected members of the base class 

Øbecome private members of the derived class

• private members of the base class are 
Ønot accessible directly from the derived class



Constructor and Destructor in Inheritance
• When creating an object of the derived class, the base class's 

constructor is called first, followed by the derived class's 
constructor 

• Conversely, when the object is destroyed, the derived class's 
destructor is called first, followed by the base class's destructor







Ask a question



Today
• Inheritance 

• Polymorphism

• Virtual functions

• Pure virtual functions and 
abstract classes



Polymorphism
• Polymorphism is a foundational concept in object-oriented 

programming that enables objects of different classes to be 
treated as objects of a common super class 

• The term "polymorphism" is derived from Greek and means 
"having multiple forms" 

• At its core, polymorphism allows one interface to represent 
many different types of objects or methods



Polymorphism
• Remember, a class defines a type
• A type defined by a subclass is called a subtype, and a type 

defined by its superclass is called a supertype
• For example
• Dog is a subtype of Animal, and
• Animal is a supertype for Cat

• Polymorphism means that a variable of a supertype can refer to 
a subtype object
• For example, an Animal could be used to refer to a Cat or Dog



Polymorphism
• An object of a subtype can be used wherever its supertype 

value is required

For example: the 
animals vector is a 
list of pointers to 
Animal types. But 
we load it with Dog 
and Cat types.



Polymorphism
• An object of a subtype can be used wherever its supertype 

value is required

Declared type

Actual types



Today
• Inheritance 

• Polymorphism

• Virtual functions

• Pure virtual functions and 
abstract classes



Virtual Functions
• The virtual keyword plays a crucial role in enabling 

polymorphic behavior
• When a function is declared as virtual in a base class, it indicates 

that this function can be overridden by a derived class
• When a pointer to the base class type points to an object of a derived 

class, a call to a virtual function will invoke the most derived version of 
that function for the actual object being pointed to

• With the virtual keyword, the function call is dynamically 
bound to the appropriate version at runtime





Today
• Inheritance 

• Polymorphism

• Virtual functions

• Pure virtual functions and 
abstract classes



Pure Virtual Function
pure virtual function
• a virtual function with an = 0 assignment
• indicating that there is no implementation for that function
• any concrete derived class must provide an implementation



Abstract Class
• An abstract class is a class that either defines or inherits at 

least one function for that is pure virtual
• You can not create an instance of an abstract class



Ask a question


