
REST APIs

CMSC 240 Software Systems Development

Today – REST APIs

• Project Introduction

• REST APIs

• In-Class Exercises

Project

Build a custom web service of your own design

1. Create self selected teams of size 2

2. Propose an idea for a web service

3. Create a design document including UML

4. Implement your web service in C++

5. Add a unit testing suite

REST API

• Representational State Transfer
• Communication between client and server “It’s how they talk”

• “RESTful” web service

REST
API

REST API

• Benefits of REST
• Simple

• Standardized

• Scalable

• Stateless

• High Performance

http://urpizza.com/api/toppings

Client
Request

Resource

Server
Response

Request

Create

Read

Update

Delete

POST

GET

PUT

DELETE

HTTP Methods/Operations

What actions (verbs) would you want to perform on your resource?

HTTP Request

Request Body

Request Header

HTTP Method URI: Uniform Resource Identifier HTTP Version

GET Request
http://urpizza.com/api/toppings

Accept: application/json

 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

GET http://urpizza.com/api/toppings HTTP/1.1

HTTP Response

Response Body

Response Header

Response CodeHTTP Version

GET Response
http://urpizza.com/api/toppings

[{”id”:”1”,“topping”:”mozzarella”},

 {”id”:”2”,“topping”:”green pepper”},

 {”id”:”3”,“topping”:”black olive”},

 {”id”:”4”,“topping”:”red onion”},

 {”id”:”5”,“topping”:”mushroom”},

 {”id”:”6”,“topping”:”pepperoni”}]

Content-Length: 32859

 Content-Type: application/json

200 OKHTTP/1.1

JSON (Java Script Object Notation)

• JSON Syntax Rules
• Data is in name/value pairs

• Data is separated by commas

• Curly braces hold objects

• Square brackets hold arrays

HTTP Response Codes For Success

• 2xx success
• 200 OK

• Standard response for successful HTTP requests

• Use for successful GET and PUT requests

• 201 Created
• The request has been fulfilled, resulting in the creation of a new resource

• Use for successful POST requests

• 204 No Content
• The server successfully processed the request, and is not returning any content

• Use for successful DELETE requests

HTTP Response Codes For Client Errors

• 4xx client errors
• 400 Bad Request

• The server cannot or will not process the request due to an apparent client error
e.g., malformed request syntax, size too large, invalid request message

• Use for unsuccessful POST and PUT requests when JSON parsing fails

• 401 Unauthorized
• When authentication is required and has failed or has not yet been provided

• 404 Not Found
• The requested resource could not be found

• Use for unsuccessful GET, PUT, and DELETE requests when resource is not found

• 418 I'm a teapot
• The server refuses to brew coffee because it is, permanently, a teapot

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

GET Request
http://urpizza.com/api/toppings

Accept: application/json

 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

GET http://urpizza.com/api/toppings/2 HTTP/1.1

GET Response
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”green pepper”}

Content-Length: 859

 Content-Type: application/json

200 OKHTTP/1.1

PUT Request
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”red pepper”}

Accept: application/json

 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

PUT http://urpizza.com/api/toppings/2 HTTP/1.1

PUT Response
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”red pepper”}

Content-Length: 859

 Content-Type: application/json

200 OKHTTP/1.1

POST Request
http://urpizza.com/api/toppings

{”id”:”7”,“topping”:”pineapple”}

Accept: application/json

 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

POST http://urpizza.com/api/toppings HTTP/1.1

POST Response
http://urpizza.com/api/toppings

{”id”:”7”,“topping”:”pineapple”}

Content-Length: 859

 Content-Type: application/json

201 CreatedHTTP/1.1

C++ Library for RESTful web service

https://crowcpp.org

https://crowcpp.org/

Hello REST

	Slide 1: REST APIs
	Slide 2: Today – REST APIs
	Slide 3: Project
	Slide 4: REST API
	Slide 5: REST API
	Slide 6
	Slide 7: Request
	Slide 8: HTTP Request
	Slide 9: GET Request http://urpizza.com/api/toppings
	Slide 10: HTTP Response
	Slide 11: GET Response http://urpizza.com/api/toppings
	Slide 12: JSON (Java Script Object Notation)
	Slide 13: HTTP Response Codes For Success
	Slide 14: HTTP Response Codes For Client Errors
	Slide 15: GET Request http://urpizza.com/api/toppings
	Slide 16: GET Response http://urpizza.com/api/toppings
	Slide 17: PUT Request http://urpizza.com/api/toppings
	Slide 18: PUT Response http://urpizza.com/api/toppings
	Slide 19: POST Request http://urpizza.com/api/toppings
	Slide 20: POST Response http://urpizza.com/api/toppings
	Slide 21: C++ Library for RESTful web service
	Slide 22: Hello REST

